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Figure 1: Layered materials rendered using the proposed method. Each layer of the materials has an anisotropic normal dis-
tribution function (NDF), and it can be defined on a tangent vector field, which differs from layer to layer. The materials
are comprised of dielectric top layers with a refractive index of 1.49 for (a)–(e), and metallic bottom layers with a complex
refractive index of (1 + 1i, 1 + 0i, 1 + 0i) for (a)–(d) and (0.143 + 3.983i, 0.373 + 2.387i, 1.444 + 1.602i) for (e).

ABSTRACT
This paper proposes a lightweight bidirectional scattering distribu-
tion function (BSDF) model for layered materials with anisotropic
reflection and refraction properties. In our method, each layer of
the materials can be described by a microfacet BSDF using an
anisotropic normal distribution function (NDF). Furthermore, the
NDFs of layers can be defined on tangent vector fields, which differ
from layer to layer. Our method is based on a previous study in
which isotropic BSDFs are approximated by projecting them onto
base planes. However, the adequateness of this previous work has
not been well investigated for anisotropic BSDFs. In this paper, we
demonstrate that the projection is also applicable to anisotropic
BSDFs and that they can be approximated by elliptical distributions
using covariance matrices.
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1 INTRODUCTION
In the last several decades, the visual quality of computer graphics
has improved significantly due to the long-standing efforts of both
the research and industrial communities. In particular, success in
reflectance modeling has enabled representation of a surprisingly
wide variety of real-world materials in computer graphics. Among
such materials, those comprising of thin layers of different material
components have attracted much attention recently due to the
demand for surface-painted man-made objects. For example, a car
body is coated multiple times with different types of paints, and
this process generates a characteristic appearance for the car.

While accurate representation [Jakob et al. 2014; Zeltner and
Jakob 2018] and path sampling [Guo et al. 2018] for layered mate-
rials have been proposed in the context of offline rendering, light
transport in layered materials is usually approximated using an-
alytic models particularly in real-time rendering. Weidlich and
Wilkie [2007] and the extension of their work by Elek [2010] lin-
early combined the bidirectional scattering distribution functions
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(BSDFs) of layers using a transmission factor. Guo et al. [2017]
extended normal distribution functions (NDFs) using von Mises–
Fisher (vMF) distributions to consider multiple reflection lobes and
internal scattering. However, the vMF distributions cannot capture
the heavy tails of directional distributions, which is often required
for modelingmetallic materials. Recently, Belcour [2018] considered
directional statistics of light rays and formulated how each layer
changes the statistics. They referred to the operators that change
the statistics as atomic operators. Although the atomic operator
was practically simple and powerful, its applicability to anisotropic
reflection and refraction has not been well investigated. In this
paper, we extend the atomic operator for anisotropic reflection and
refraction properties of layers.

1.1 Background
In the original method [Belcour 2018], a behavior of light interaction
with layered materials was represented by energy of light e and two
statistical parameters, that is, the mean µ ∈ [−1, 1]2 and variance
σ ∈ [0,∞] of the distribution of light directions1. The property
of a surface between two neighboring layers is defined by three
functions each of which modifies one of the three parameters above.
For rough reflection and refraction, the parameters are transformed
as follows:

eR =ei×FGD
∞, µR =−µi , σ

R =σi + h(α), (1)

eT =ei×
(
1 − FGD∞

)
, µT =−ηµi , σ

T =
σi
η
+h(s × α), (2)

where h(α) =
α1.1

1 − α1.1
, s =

1
2

[
1 + ηωi · n

ωt · n

]
,

where ωi ∈ S2 denotes an incident direction; ωt ∈ S2 refers to
a refracted direction; n ∈ S2 denotes a surface normal; (ei , µi ,σi )
refers to the parameters of incident light; (e {R,T } , µ{R,T } , σ {R,T })

denote the parameters of reflected or transmitted light; α ∈ [0, 1]
andη refers to the roughness parameter and relative refractive index
on a boundary surface between layers, respectively. FGD∞ repre-
sents the effects of the Fresnel term, shadowing-masking function,
and NDF. In the original method, Belcour [2018] precomputed the
FGD∞ values while considering multiple scattering effects [Heitz
et al. 2016] and stored them in a lookup table. For detailed defini-
tions of these parameters as well as those for function h(α) and
roughness scaling factor s , refer to the original paper [Belcour 2018].

By successively applying the above transformations by the layers,
we can obtain eq , µq , and σq of outgoing light for a configuration
q of successive light interactions. For instance, q = TRT represents
a transmission-reflection-transmission path. Let Q be a set of valid
sequences of light interactions. Then, a bidirectional reflectance
distribution function (BRDF) ρ is defined as follows:

ρ(ωi ,ωo ) =
∑
q∈Q

eqρq (ωq ,ωo ,αq ), (3)

where αq = h
−1(σq ), ωq = reflect(µq ),

ρq (ωq ,ωo ,αq ) =
D(h)G(ωq ,ωo )

4|ωq · n| |ωo · n|
.

1The symbol σ represents variance rather than standard deviation following the
original paper [Belcour 2018]
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Figure 2: Our method works for layers with anisotropic
NDFs defined on varying tangent vector fields, whereas the
previous method [Belcour 2018] can be applied only to
isotropic NDFs.

In these equations, ωo ∈ S2 is the outgoing direction, D(h) ∈

[0,∞] denotes an NDF for halfvector h = (ωq + ωo )/∥ωq + ωo ∥,
G(ωq ,ωo ) ∈ [0, 1] denotes a shadowing-masking function, and
reflect(µq ) represents the direction of perfect reflection for µq .

The above formulas are only applicable to isotropic reflection and
refraction because the variance is modelled with a single variance
parameter σ to define a radially symmetric distribution.

2 LAYERED MATERIALS WITH
ANISOTROPIC NORMAL DISTRIBUTIONS

The proposed method is an extension of Belcour’s method [2018]
which approximated BSDFs by projecting them onto the base plane.
The previous study restricted their applicability only to isotropic
NDFs. In contrast, the proposed method extends the approach to
anisotropic NDFs, as shown in Fig. 2.

2.1 Covariance of Projected Distribution
To represent anisotropic BSDFs projected on the base plane, we
employ a 2 × 2 covariance matrix Σ rather than a scalar variance
σ . However, the relationship between the tangent vector field and
the covariance matrix is non-trivial. Let tx ∈ S1 and ty ∈ S1 be the
tangent and binormal vectors, respectively, that are the orthogonal
vectors on the 2D local coordinate system P of the tangent vector
field. When an NDF is projected on the plane, the principal direc-
tions of the projected distribution coincide with tx and ty following
the definitions of GGX and Beckmann distributions (see Fig. 3). Be-
cause an anisotropic BSDF can be approximated by an anisotropic
spherical Gaussian [Xu et al. 2013], its projection to the base plane
is also approximated by an anisotropic Gaussian function on the
region near to the distribution center, as shown in Fig. 3.

Next, let us consider the relationship between a halfvector h =
(ωi +ωo )/∥ωi +ωo ∥ and outgoing direction ωo for reflection. Let
(xh ,yh ) be the projection of h in P, and (xo ,yo ) be the projection
of ωo in P. As discussed in a previous study [Stam 2001] (see
Appendix B), we assume that ωi = (sinθi , 0, cosθi ) in the tangent
space using an incident zenith angle θi ∈ [0,π/2] and an azimuthal
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NDF BRDF

Figure 3: Projected distributions for an NDF and correspond-
ing BRDF are visualized. To evaluate the BRDF, we used the
zenith angle π/4 of incident direction ωi , as shown in the
image to the left. The principal axes for these distributions
are the same, and the elliptic shape for the NDF is approxi-
mately preserved in that of the BRDF.

angle of zero without loss of generality. Then, the relationship
between (xh ,yh ) and (xo ,yo ) can be written as follows:

xo = 2
(
xh sinθi + cosθi

√
1 − x2h − y2h

)
xh − sinθi ,

yo = 2
(
xh sinθi + cosθi

√
1 − x2h − y2h

)
yh .

Thus, the Jacobian matrix Jr for the coordinate transform from
(xh ,yh ) to (xo ,yo ) will be

Jr =


4xh sin θi+

2
(
1−2x2h−y2h

)
cosθi√

1−x2h−y2h
−

2xhyh cosθi√
1−x2h−y2h

2yh sin θi−
2xhyh cosθi√

1−x2h−y2h
2xh sin θi+

2
(
1−x2h−2y2h

)
cosθi√

1−x2h−y2h

 .
Assuming xh , yh , and θi are small enough so that we can ignore the
second- and higher-order terms of xh , yh , and sinθi , we approxi-
mate the above Jacobian matrix as

Jr ≈

[
2 cosθi 0

0 2 cosθi

]
. (4)

The same representation was derived by Stam [2001] as an exact
solution at the perfect reflection vector (which corresponds to µR ).
Unlike his solution, Eq. (4) is the approximation over the region
near µR . For refraction, we also approximate the Jacobian matrix
Jt using the same assumption, as follows:

Jt ≈
[
(cosθi − cosθt ) /η 0

0 (cosθi − cosθt ) /η

]
, (5)

where θt is the zenith angle for the direction of refraction ωt . For
both cases, the Jacobian matrix is a simple scaling matrix. For the
derivation, please refer to the supplementary document.

Although the assumption of the small zenith angle θi causes a
large error in the grazing angle, we prioritize the simplicity of imple-
mentation over physical strictness. While this problem of the graz-
ing angle was also observed in the previous study [Belcour 2018], a
compromise is allowable in practice, as we demonstrate later. We
also need to consider the effects of the Fresnel term, shadowing-
masking function, and cosine term to define a BSDF [Walter et al.
2007]. Nevertheless, these effects are low-frequency and can be
negligible when the roughness parameters are relatively small.
Therefore, we discuss the property of the coordinate transform
using the above Jacobian matrices.

As we can see in Eqs. (4) and (5), the Jacobian matrices for both
reflection and refraction are diagonal, and their two diagonal en-
tries are equal. The diagonality implies that the directions of the
orthogonal basis vectors of P are preserved, as shown in Fig. 3.
Therefore, we only need to transform anisotropic roughness param-
eters (αx ,αy ) ∈ [0, 1]2 along the tangent vector tx and binormal
vector ty to define a covariance matrix for the projected BSDF. The
uniformity of the diagonal entries implies that the stretch of the
variances along tx and ty depend on neither the definition of the
tangent vector field nor the difference in the roughness parame-
ters. Therefore, we transform the roughness parameters (αx ,αy )
to corresponding scalar variances (σx ,σy ) ∈ [0,∞]2 using h(α).
Accordingly, the covariance matrix for a BSDF is given as

Σ =
[
tx ty

]⊤ [
σx 0
0 σy

] [
tx ty

]
,

where σ{x,y } =


h
(
α {x,y }

)
for reflection,

h
(
s × α {x,y }

)
for refraction.

For energy e and mean µ , we use the same representations
as those in the previous study because the anisotropy of BSDFs
does not affect these terms significantly. Therefore, we obtain an
extended BSDF with anisotropic NDFs by substituting the above
covariance matrix Σ into Eqs. (1) and (2). To build a global BRDF
using the adding-doubling method as in the original paper [Belcour
2018], we take exactly the same procedure introduced in it.

3 RESULTS AND DISCUSSION
The following experiments were conducted on a computer with
Intel® Core™ i7-8700 3.2 GHz CPU and NVIDIA® GeForce® RTX
2080 Ti GPU. We use a two-layer material in which the bottom
conductor layer is coated with a clear dielectric layer. The formulas
for two-layer materials are obtained by the adding-doublingmethod
and appear in the supplementary document. We implement the
proposed method using Marmoset Toolbag 3 [2019].

In the rendering pipeline, we follow an approximation for FGD∞

in the implementation of Unity [2019] to avoid the lookup table
being memory consuming for anisotropic materials. In addition,
we calculate an average covariance matrix, which can differ from
channel to channel, for three color channels following the public
implementation of the previous works [Belcour 2018; Unity Tech-
nologies 2019]

While we mainly show the results of image-based lighting, the
computation time of ourmethod for a trivial scenewith a directional
light is 1.01 ms, which is sufficiently short for real-time applications
such as interactive material editing.

Figure 1 shows the rendering results obtained using our method
for various layered materials with isotropic/anisotropic NDFs de-
fined on same/different tangent vector fields. These results include
only direct illumination from environment maps. For this image-
based lighting, we compute the Monte Carlo integration using a vis-
ible NDF importance sampling technique [Heitz 2018] for each term
of Eq. (3). We compare the computation time between Belcour’s
method [2018] for isotropic BSDFs and our extension to anisotropic
BSDFs. In this comparison, we evaluate both methods by sampling
the BRDFs in Eq. (3) separately to focus on the overhead incurred by
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Figure 4: Our results are visually compared with the refer-
ence images, and the error value for each pixel is also visu-
alized in the images to the right. The rootmean square error
(RMSE) values are shown to the bottom left. The roughness
parameters for these results are the same as those used for
Fig. 1(a), (b), and (d).

Figure 5: The chart to the left compares the computation
time of Belcour [2018] for isotropic BSDFs and our exten-
sion to anisotropic BSDFs. The chart to the right shows the
additional computation time in percentage terms of our ex-
tension over Belcour’s method.

changing scalar variance σ to our covariance matrix Σ. Fig. 5 shows
the rendering time using varying numbers of samples. Although
our method increases the ALU overhead and register pressure, this
experimental result demonstrates that the performance degradation
when using the method for isotropic BSDFs is negligible.

The visual comparison of the results is shown in Fig. 4. In this
figure, pixel-wise root mean square errors (RMSEs) are visualized
in the column to the right. We find that the RMSEs are rather large
on the rim regions of the sphere, where the viewing angles are com-
paratively small. However, the overall computation time to render
a single frame with 2048 spp was 587.8 ms for naive simulation
to obtain reference images, whereas that for our method is only
45.1 ms. Additional results using different roughness parameters

and rotation angles for the local coordinate system appear in the
supplementary document.

While our method renders anisotropic layered materials in in-
teractive frame rates by extending Belcour’s method [2018], it is
inevitable that our method inherits the limitations of this previous
method. For example, for layers with very high roughness and in-
dexes of refraction, the directional distributions projected on the
base plane may not be elliptical. Despite this fact, the wide ap-
plicability of our method to a broad range of layered materials is
beneficial to practical graphics production.

4 CONCLUSION
In this paper, we introduced a real-time approach for rendering lay-
ered materials wherein the layers are modeled by anisotropic NDFs
defined on varying tangent vector fields. The proposed method is
easily implemented on the top of the original approach proposed
by Belcour [2018] for isotropic NDFs, and is performed with only
minor additional computation cost.
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